

GROWING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS

SOIL QUALITY

Ellen Phillips and Zach Grant March 2014

Objectives

- Define Soil Quality Review Soil Quality Factors
 - **Physical**
 - Structure
 - Aggregate stability
 - Bulk density

 - PorosityWater Relations
 - Permeability
 - Infiltration

 - Crusting
 Available Water Capacity
 - Biological
- A living system
 Organic matter
 Management and Soil Quality
 Increasing OM

 - Minimizing tillage

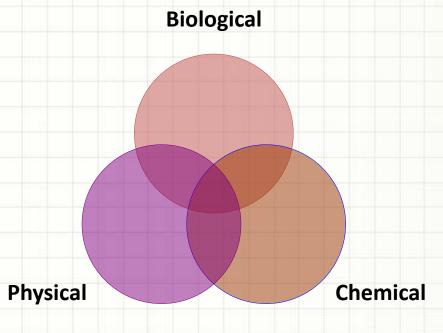
Soil Quality Defined

"The capacity of a soil to function within ecosystem boundaries to sustain biological productivity, maintain environmental quality, and promote plant, animal and human health."

Soil Quality Defined

- Farmer: sustaining or enhancing productivity, maximizing profits, and maintaining the soil resource
- Naturalists: soil in harmony with the landscape and its surroundings
- Environmentalist: soil functioning at its potential in an ecosystem with respect to biodiversity, water quality, nutrient cycling, and biomass production

Soil Quality Defined


- Provide hospitable conditions for life within the soil
- Provide ecosystem services
 - Support plant growth
 - Cycle nutrients
 - Hold and release water
 - Exchange gases
 - Conserve natural enemies and suppress pests
 - Store carbon

Soil Quality Factors

- The ability of a soil to function within ecosystem boundaries to support healthy plants and animals, maintain or enhance air and water quality, and support human health and habitation
- Soil quality integrates the physical, chemical and biological condition of the soil

Soil Properties

Objectives

- Define Soil Quality Review Soil Quality Factors
 - **Physical**
 - Structure
 - Aggregate stability
 Bulk density

 - PorosityWater Relations
 - Permeability
 - Infiltration

 - Crusting
 Available Water Capacity
 - Biological
- A living system
 Organic matter
 Management and Soil Quality
 - Increasing organic matter Minimizing tillage

Physical Factors

- Soil Structure
- Aggregate Stability
- Bulk Density/Compaction
- Soil Pores
- Permeability

Affect water movement and storage

- Infiltration
- Surface Crusting
- Available Water Holding Capacity

Soil Structure

- Definition
 - The naturally occurring arrangement of soil particles into secondary units or peds
- Why is it important?
 - Infiltration/permeability
 - Soil erosion
 - Root penetration
 - Air movement
 - Reduces susceptibility to compaction

Soil Structure

Example of good blocky structure in a soil profile.

Factors Influencing Soil Structure

- Surface development factors
 - Biological activity
 - Organic matter
 - Tillage
- Subsurface development factors
 - Texture
- Shrink-swell, wetting & drying cycles
- Root growth
- Soil microbial activity
- Soil formation factors

Aggregate Stability

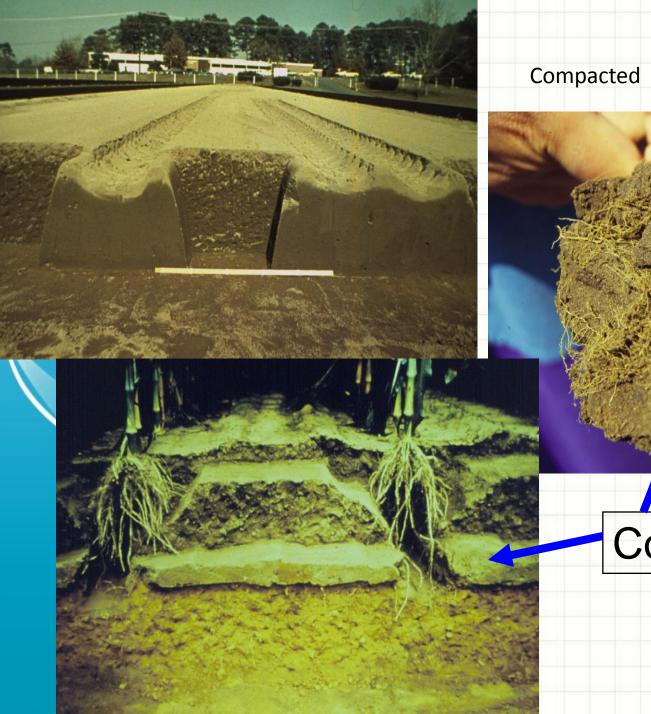
- Definition
 - The ability of soil aggregates to resist disruption.
- Why is it important?
 - Good aggregate stability reduces erosion
 - Facilitates water movement into and through soil
 - Increases plant root growth
 - Decreases surface crusting
 - Increases water and gas movement
 - Aggregates protect organic matter

Aggregate stability

Similar sized aggregates are placed in the water and dunked a couple of times. Look at not only the aggregates left, but the sediment in the water.

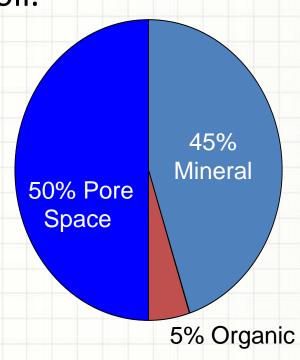
Factors Influencing Aggregate Stability

- Organic matter content
- Clay content
- Tillage
- Microbial activity
 - Glomalin
 - a sticky protein secreted by mycorrhizal fungi that binds soil particles together



Bulk Density/Compaction

- Definition
 - the weight of a given volume of soil
 - Compaction is the reduction of pore space
- Why is it important?
 - Root growth and development
 - Water and air movement
 - Increases runoff/erosion
 - Earthworm movement



Soil Pores

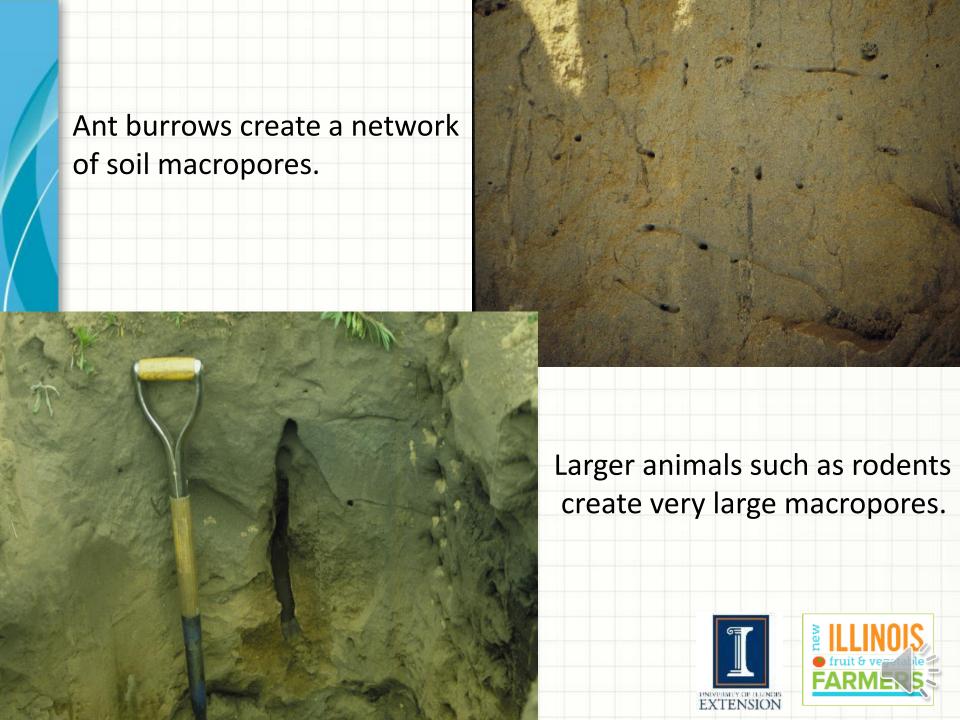
- Definition
 - Air or water filled voids in the soil.
- Why is it important?
 - Infiltration
 - Permeability
 - Root Penetration
 - Air Exchange
 - Macropores vs. Micropores

Soil

Factors Influencing Soil Pores

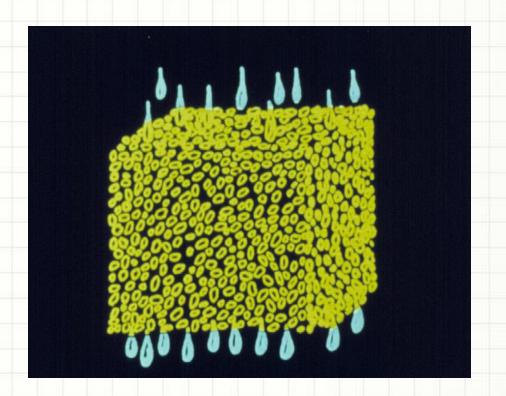
- Soil aggregates
- Plants and animals
- Soil texture
- Organic matter
- Tillage
- Compaction
- Plow pan

Soil at Bottom of Soil Core Earthworm channels


Conventional Tillage

18 Years No-till

Soil Permeability


- Definition
 - The ease with which fluids or gasses can flow through soil.
- Why is it important?
 - Leaching of fertilizer or pesticides
 - Slow permeability increases water erosion

Factors Influencing Permeability

- Texture
- Compaction
- Porosity
- Structure

Infiltration

- Definition
 - The process of water entering the soil from the surface.
- Why is it important?
 - Soil as storage medium for water
 - Good infiltration reduces erosion, runoff, and ponding.

Infiltration

0.1 in/min

5 in/min

35% Water Stable Aggregates

Water Stable Aggregates

88%

Factors Influencing Infiltration

- Soil structure/ Aggregate strength
 - tillage
 - compaction
 - surface crusting
- Organic matter
- Biological Activity (earthworms, etc.)
- Soil Texture (sandy soils have higher rate)
- Crop rotation with deep roots

Earthworm Burrows

middens

Middens: piles of residue around the mouth of earthworm burrows.

Surface Crusting

- Definition
 - Thin layer on the soil surface that restricts water and air entry and seedling emergence.
- Why is it important?
 - Reduces infiltration
 - Increases Runoff
 - Reduces oxygen diffusion to roots

Factors Influencing Surface Crusting

- Organic Matter
- Aggregate Stability
- Rainfall Intensity
- Residue Cover
- Sodium content

Available Water Capacity (AWC)

- Definition
 - amount of water that is between field capacity &permanent wilting point
- Why is it important?
 - Water supply for plants between each rainfall or irrigation
 - Each extra inch of water added to AWC increases yield
 - Water supply for soil inhabitants (fungi, bacteria, etc.)

Factors Influencing AWC

- Texture
- Organic matter
- Structure (Rocky Soils)
- Bulk density
- Plow Pans destroy pore space
- Rooting depth
- Salinity

Objectives

- Define Soil Quality Review Soil Quality Factors
 - **Physical**
 - Structure
 - Aggregate stability
 - Bulk density

 - PorosityWater Relations
 - Permeability
 - Infiltration

 - Crusting
 Available Water Capacity
- Biological
 A living system
 Organic matter
 Management and Soil Quality
 - Increasing organic matter Minimizing tillage

Biological Factors

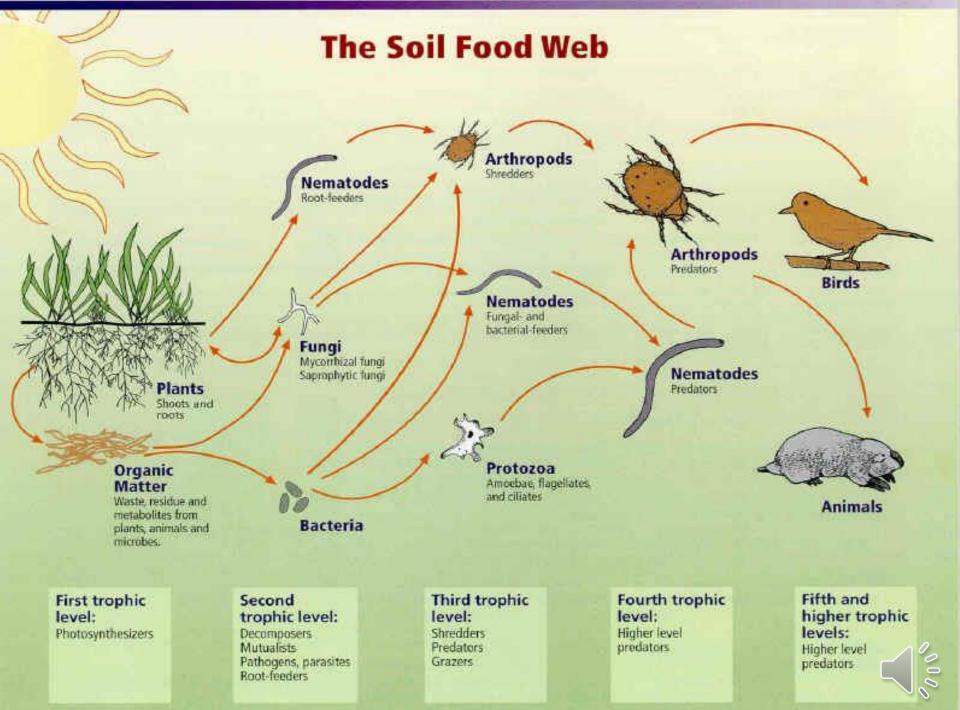
- Earthworms, soil arthropods, nematodes, fungi, bacteria, algae
 - Contribute to nutrient cycling, buffering, filtering
 - Improve soil structure, aggregation
 - Resistance to disease
 - Holds organic matter

In 1 teaspoon of healthy soil there are...

Bacteria 100 million to 1 billion

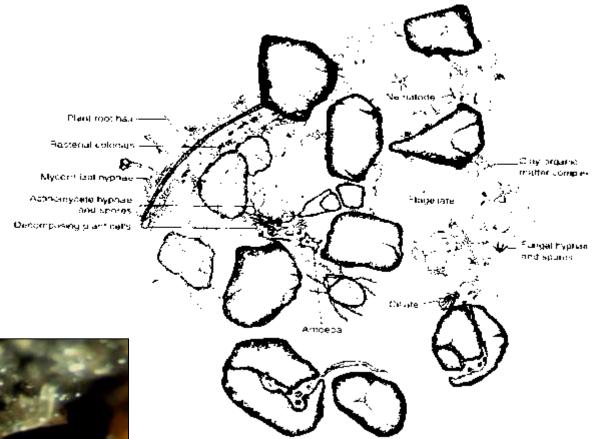
Fungi 6-9 ft fungal strands put end to end

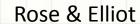
Protozoa Several thousand flagellates & amoeba


One to several hundred ciliates

Nematodes 10 to 20 bacterial feeders & a few fungal feeders

Arthropods Up to 100


Earthworms 5 or more



What Do Soil Organisms Need?

- Space
- Water
- Air
- Food
 - C:N=30:1

Ecosystem Services Provided by Soil Organisms

- Decomposition and mineralization
- Contribute to plant nutrition
 - Rhizobia associated with legumes
 - Mycorrhizae fungi associated with many plants
- Soil aggregation, aggregate stability, and porosity
 - Humic acids and gummy material to trap OM
- Infect, compete with or antagonize pests

Objectives

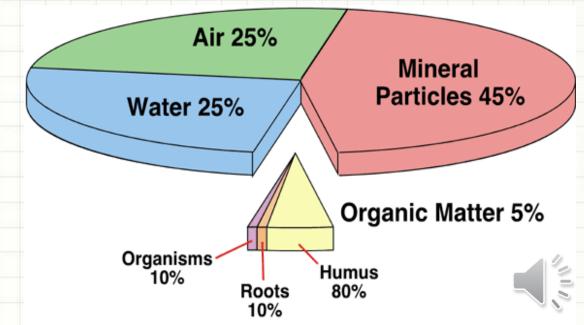
- Define Soil Quality Review Soil Quality Factors
 - **Physical**
 - Structure
 - Aggregate stability
 - Bulk density

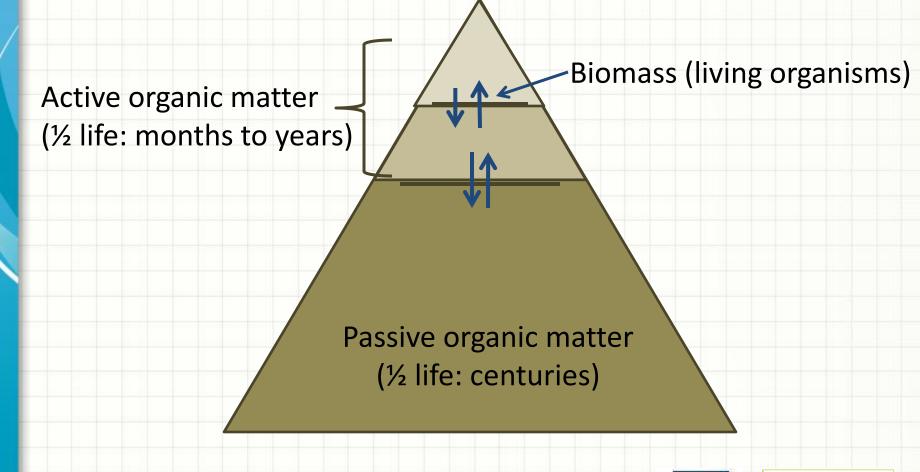
 - PorosityWater Relations
 - Permeability
 - Infiltration

 - Crusting
 Available Water Capacity
 - Biological

 - A living system Organic matter
- **Management and Soil Quality**
 - Encourage an active biological community
 - Increasing organic matter
 - Minimizing tillage

Management of Soil Quality


- Inherent vs. dynamic soil properties
 - Inherent:
 - Change little with management
 - texture, clay mineralogy, drainage class, etc.
 - Dynamic:
 - Change over months and years in response to management
 - organic matter, structure, bulk density, water and nutrient holding capacity, etc.
- Do the management practices improve, sustain, or degrade soil quality?


Soil organic matter (SOM)

- Overwhelming impact on most soil properties
 - Improves all aspects of soil quality
- Typically 1 to 6% in agricultural soils
- Living organisms, fresh residues, & welldecomposed residues

(Magdoff and van Es, 2009)

Soil organic matter

Active or labile organic matter

- Materials of recent origin
 - Till cover crops, cured compost, manure
- High nutrient/energy value
- Most important to:
 - Soil aggregation
 - Nutrient mineralization
 - Efficient cycling of N,P, & S
- Most sensitive to management changes
 - Difficult to change overall percentage OM when just adding this type of OM

Passive or recalcitrant organic matter

- Physically protected or stable due to biochemical properties or mineral association
- Humic substances, aliphatic molecules, lignin's, etc
- Responsible for much of CEC
 - Greater % in coarse-textured soils
 - Lots of negative charge
- Nutrients in organic-mineral complexes
- Key role in water holding capacity, bulk density, etc

Soil organic matter management

- Effectively use crop residues and add new residues (cover crops, local residues)
- Use varied residues to maintain diverse population of soil organisms
- Balance farm exports and inputs of nutrients so as not to build excessive nutrients
- Use practices that do not accelerate decomposition or erosion
 - Excessive tillage
 - Excessive N fertilization
 - Lack of cover
 - Removal of residues

Impacts of tillage

- Traditional tillage
 - Disrupts soil aggregates
 - Disrupts soil organisms
 - Makes soil less resistant to:
 - Compaction
 - Erosion
 - Breakdown of organic matter

Sustainable tillage & cultivation

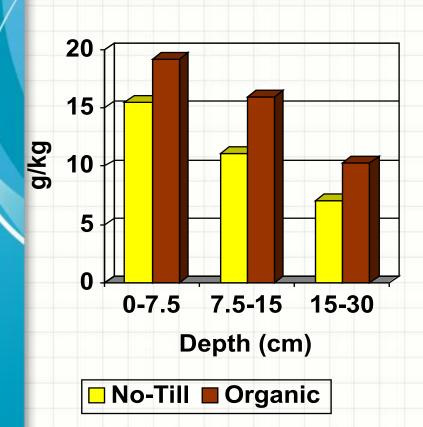
- Minimizes compaction
- Minimizes loss of aggregates
- Promotes infiltration
- Protects soil from wind/water erosion
- Minimizes disruption of beneficial soil organisms
- Maintains soil cover by residues

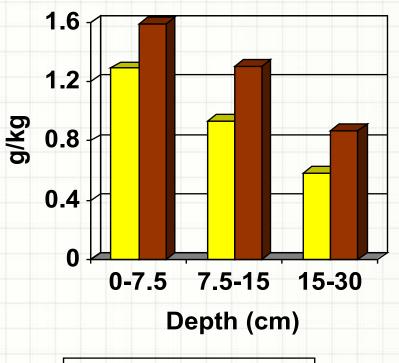
Sustainable tillage & cultivation

- Minimize tillage
 - Undercutter or roll-chopper
 - Mulch tillage or add mulches
 - No-till
 - Disk plant or Chisel plant
 - Ridge tillage
 - Strip tillage
 - Chisel/sweep plows vs. moldboard and disk plows
- Maintain residues (>30%) and increase surface roughness

Conventional no-till vs. organic

- Numerous benefits of conservation tillage or no-till over conventional tillage systems
- With proper management, organic systems can exceed no-till in terms of C storage and increased soil organic matter
 - Extensive use of cover crops, green manures
 - Composts, manures
 - Lack of inorganic N fertilizers
 - Lack of herbicides/pesticides




SQ in Organic vs. No-Till

Sustainable Agriculture Demonstration Project, USDA, Beltsville, MD 1994-2002

Total Soil C, 2002

Total Soil N, 2002

■ No-Till ■ Organic

Teasdale et al., 2007. Agron. J. 99: 1297-1305.

SQ in Organic vs. No-Till

Sustainable Agriculture Demonstration Project, USDA, Beltsville, MD 1994-2002

Uniformity Trial

System 1994-2002	Grain Yield, 2004	Soil Nitrate N, 2004	Corn Ear Leaf N, 2004
	(Mg/ha)	mg/kg	(%)
No-Till*	5.8	14.8	2.49
Organic	6.7	21.0	2.99

^{*}All significant at P< 0.05

Teasdale et al., 2007. Potential Long-Term Benefits of No-Tillage
And Organic Cropping Systems for Grain Production and Soil Improvement.
Agron. J. 99: 1297-1305.

Conventional no-till vs. organic

- Look for opportunities to integrate perennial crops into organic rotations
 - Eliminate tillage for a few years
 - Perennial hay or pasture crops
- Utilize mechanically-killed/ winter killed cover crop residues for weed suppression
- Continuous no-till probably not feasible in organic vegetable production at this time

Management for Soil Quality

- Encourage an active biological community
- Enhance organic matter
 - Keep the ground covered
 - Diversify cropping systems
 - crop rotation and cover crops
 - Reduce disturbance
 - polyculture, orchards, reduce or rotate tillage,
 - perennial crops or cover crops
- Avoid excessive tillage
 - Prevent soil compaction

Summary

- Define Soil Quality Review Soil Quality Factors
 - **Physical**
 - Structure
 - Aggregate stability
 - Bulk density

 - PorosityWater Relations
 - Permeability
 - Infiltration

 - Crusting
 Available Water Capacity
 - Biological
- A living system
 Organic matter
 Management and Soil Quality
 Increasing organic matter
 Minimizing tillage

To reach us

Contacts Contact information

Zachary Grant <u>zgrant2@illinois.edu</u>

Ellen Phillips <u>ephillps@illinois.edu</u>

Rick Weinzierl <u>weinzier@illinois.edu</u> 217-244-2126

Mary Hosier <u>mhosier@illinois.edu</u>

