

Illinois Migrant Council

PREPARING A NEW GENERATION OF ILLINOIS FRUIT AND VEGETABLE FARMERS

a USDA NIFA BEGINNING FARMER AND RANCHER
DEVELOPMENT PROGRAM PROJECT
GRANT # 2012-49400-19565

http://www.newillinoisfarmers.org

Preparing a New Generation of Illinois Fruit and Vegetable Farmers

Transplant Success!

Jeff Kindhart, Chris Konieczka¹, Zack Grant, William Davison, Shelby Henning and Jeremy Shafer

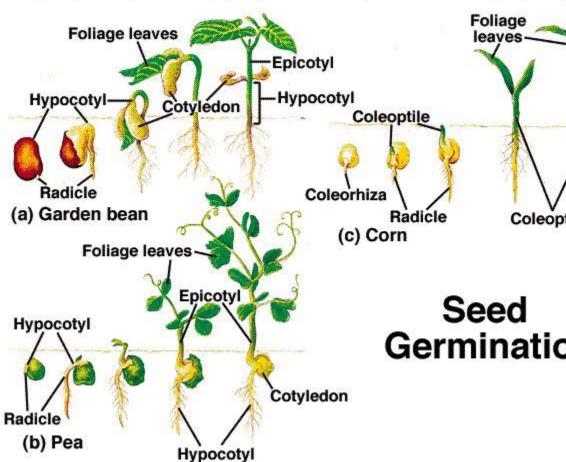
¹Some slides developed by Chris Konieczka

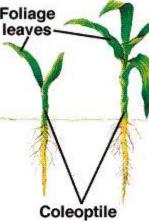
January 2014

Why use transplants?

- Higher germination rate for expensive seeds
- Extends growing season 4 to 6 week old plants are ready to set out soon as danger of frost has passed
- Earlier yields which allow for easier crop marketing

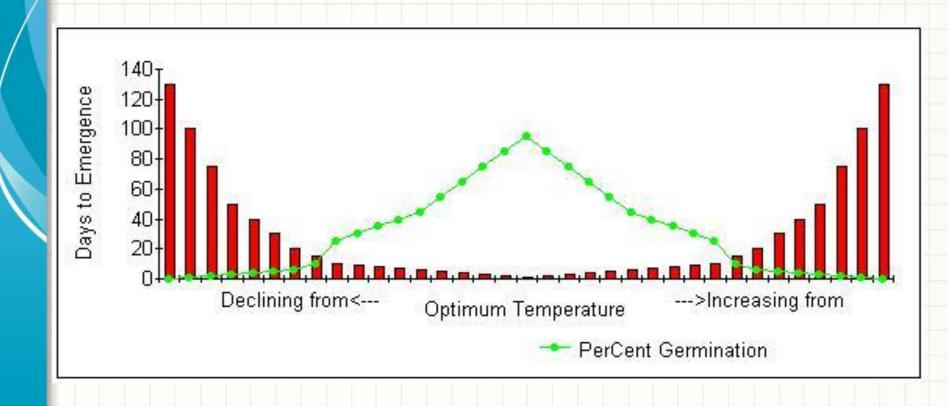
Hotbeds & Greenhouses





Seed Germination

Randy Moore, Dennis Clark, and Darrell Vodopich, Botany Visual Resource Library @ 1998 The McGraw-Hill Companies, Inc. All rights reserved.



Factors for seed germination

- 1. Viable seed: Seed must be alive (embryo)
- 2. Correct environmental conditions including:
 - a. Water
 - b. Temperature
 - c. Oxygen
 - d. Light
- 3. Lack of dormancy or dormancy released

Impact of Temperature

Percentage of Normal Vegetable Seedlings Produced at Different Temperatures* **

Numbers in () are the days to seedling emergence. Number in red = optimal daytime soil temperature for maximum production in the shortest time.

Crops	32°F	41°F	50°F	59°F	68°F	77°F	86°F	95°F	104°F
Asparagus	0	0	61(53)	80(24)	88(15)	95(10)	79(12)	37(19)	0
Beans, lima	0	0	1	52(31)	82(18)	90(7)	88(7)	2	0
Beans, snap	0	0	1	97(16)	90(11)	97(8)	47(6)	39(6)	0
Beets	0	53(42)	72(17)	88(10)	90(6)	97(5)	89(5)	35(5)	0
Cabbage	0	27	78(15)	93(9)	0(6)	99(5)	0(4)	0	0
Carrots	0	48(51)	93(17)	95(10)	96(7)	96(6)	95(6)	74(9)	0
Cauliflower	0	0	58(20)	60(10)	0(6)	63(5)	45(5)	0	0
Celery	0	72(41)	70(16)	40(12)	97(7)	65	0	0	0
Cucumber	0	0	0	95(13)	99(6)	99(4)	99(3)	99(3)	49
Eggplant	0	0	0	0	21(13)	53(8)	60(5)	0	0
Lettuce	98(49)	98(15)	98(7)	99(4)	99(3)	99(2)	12(3)	0	0
Muskmelon	0	0	0	0	38(8)	94(4)	90(3)	0	0
Okra	0	0	0	74(27)	89(17)	92(13)	88(7)	85(6)	35(7
Onions	90(136)	98(31)	98(13)	98(7)	99(5)	97(4)	91(4)	73(13)	2
Parsley	0	0	63(29)	0(17)	69(14)	64(13)	50(12)	0	0
Parsnips	82(172)	87(57)	79(27)	85(19)	89(14)	77(15)	51(32)	1	0
Peas	0	89(36)	94(14)	93(9)	93(8)	94(6)	86(6)	0	0
Peppers	0	0	1	70(25)	96(13)	98(8)	95(8)	70(9)	0
Radish	0	42(29)	76(11)	97(6)	95(4)	97(4)	95(3)	0	0
Spinach	83(63)	96(23)	91(12)	82(7)	52(6)	28(5)	32(6)	0	0
Sweet Corn	0	0	47(22)	97(12)	97(7)	98(4)	91(4)	88(3)	10
Tomatoes	0	0	82(43)	98(14)	98(8)	97(6)	83(6)	46(9)	0
Tumips	1	14	79(5)	98(3)	99(2)	100(1)	99(1)	99(1)	88(3
Watermelon	0	0	0	17	94(12)	90(5)	92(4)	96(3)	0

Water and Oxygen

Dormancy Types and Remedies

- Hard seed coat(many gourds)
 - Scarify seed coat
- Immature embryo
 - Allow for after ripening period
- Internal physiological dormancy
 - Stratification

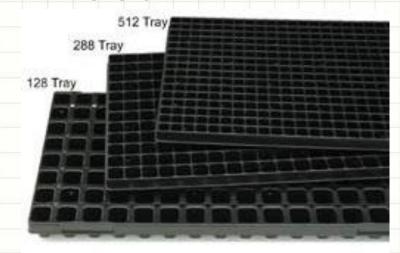
Seeding Methods

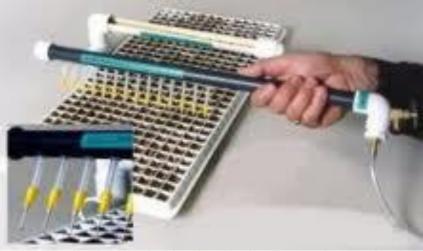
- Broadcast
- Sown in rows
- Direct seeded into plug tray, jiffy pellet, grodan block etc.

Broadcast

- Broadcast onto surface randomly
- Used for fine seeds
- Damping off can be real problem

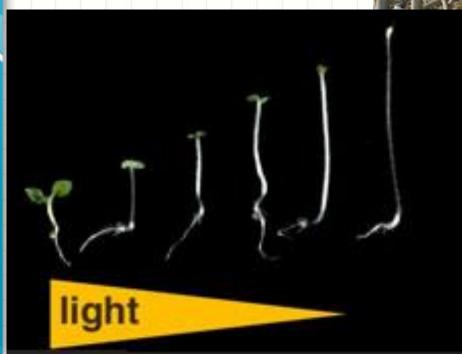
In Rows





Direct

Germinating



Potting

Container Selection

- Material
 - Plastic
 - Clay
 - Peat
- Size
 - Tomato: larger transplant=earlier fruit + higher yield
 - Must be large enough to support size of finished transplant

Consider Transplant Size when Looking for Extra-Early Hoop House Tomato Yields

Table 1 Influence of Transplant Size and Transplanting Date on Yield of Hoop House Grown "Road Runner" Tomato

Treatment			Early* Mar Yield (l		Total Marketable Yield (lbs.)	
Container Size	Seeding Date	Transplanting Date	Per Treatment**	Per Plant	Per Treatment	Per Plant
6 - inch (1 quart)	21-Jan	13-M ar	29.4 A ***	98	66.5 A	22.2
6 - inch	6-Feb	13-M ar	29.9 A	10	62.2 AB	20.7
45-inch (1 pint)	6-Feb	13-M ar	28.9 A	9.6	63.2 AB	21.1
45-inch	21-Feb	27-M ar	19.4 B	65	55.7 BC	18.6
2 - inch (œll)	21-Feb	27-M ar	12.1 B	4	50.6 C	169

^{*=} Accumulative Harvest through June 17th

**= Treatment is the average of three plants, replicated four times (12 plants per average).

***= Values not connected by same letter are significantly different

Container Material

- Plastic
 - Economical
 - Light weight
 - May be reusable
 - Nearly infinite selection of sizes
 - Tends to stay wet

Clay

- Heavy
- Reusable
- Easier to keep dry

Peat

- Light weight
- Easy to keep dry
- Not reusable

Common soilless media

Plug Mix

Growing Media

Pro Mix BX

- Traditional peat-based growing medium with perlite and vermiculite
- Is pH-adjusted
- General-purpose growing mix for transplanting a wide variety of plant species
- Ideal for the production of vegetable transplants in large cell trays
- Contains MYCORRHIZAE™ mycorrhizal inoculum (Glomus intraradices)
- Contains BIOFUNGICIDE™ (Bacillus pumilus strain GHA-180)

- Canadian Sphagnum Peat Moss (75-85% by volume)
- Perlite horticultural grade
- Vermiculite-horticultural grade
- Dolomitic and Calcitic limestone (pH adjuster)
- Wetting Agent
- Mycorrhizae endomycorrhizal innoculum (Glomus intraradices)
- BIOFUNGICIDE™ (Bacillus pumilus strain GHA-180)

ILLINOIS

fruit & vegetable

FARMER

EXTENSION

Transplant Growing

- Water only when needed
- Apply fertilizer
- Maintain good light
- Maintain proper temperatures
- Have good air circulation
- Maintain proper plant spacing

Fertilizer

GUARANTEED ANALYSIS For Continuous Liquid Feed Programs 3.94% ammoniacal nitrogen 6.05% nitrate nitrogen 10.01% urea nitrogen Available phosphate (P2O5)20% Soluble potash (K2O).....20% Magnesium (Mg) (Total) 0.05% o.o5% water soluble magnesium (Mg) o.oo36% chelated copper (Cu) Iron (Fe) 0.05% o.o5% chelated iron (Fe) Manganese (Mn)...... 0.025% o.o25% chelated manganese (Mn) Zinc (Zn)...... 0.0025% o.oo25% chelated zinc (Zn) Derived from: ammonium phosphate, potassium nitrate, urea, magnesium sulfate, boric acid, copper EDTA, iron EDTA, manganese EDTA, ammonium

molybdate, zinc EDTA.

Potential Acidity: 565 lb. calcium carbonate equivalent per ton

<u>Crop</u>	Day Temperature	Night Temperature	Weeks from seed
Broccoli, Cabbage, Cauliflower	65	55-60	4-6
Celery	65	60	8-12
Eggplant	70-80	60	6-8
Lettuce	60-65	50	3-5
Melons	70-75	60	2-3
Onions	65-70	55-60	6-8
Peppers	70-75	60	6-8
Tomatoes	65-70	60	5-8

Keys to Success

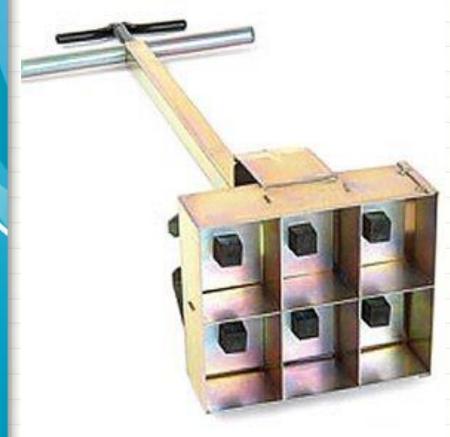
- Good sanitation
- Good light quality and quantity
- Proper Temperature Regimes

Sanitation

- Clean seed (or other propagule)
- Sterilized Containers, Tools, Benches
- No Wand/Breaker on Ground
- Lids on Garbage Cans
- No Weeds in Greenhouse
- Wash Hands especially if Tobacco user
- Soilless media

Why use soil blocks?

- ☐ Better root environment more air circulation, less pruning/binding in cells
- ☐ Improved water holding capacity
- ☐ Reduce incidence of transplant shock
- ☐ Usually can remain in flats longer than plug cells
- ☐ Less waste (fewer plastic trays)



Soil Block Mix

- 3 buckets brown peat
- ½ cup lime
- 2 buckets perlite
- 3 cups fertilizer mix
- 1 bucket soil
- 2 buckets compost
 - 10 quart bucket
 - Makes 2 bushels
- Existing soilless mix can be amended with fertilizer, soil, and compost
- Mix not sterilized, can sterilize soil before mixing if needed

Other Organic Transplant Mixes

- MSU-SOF Compost based mix
 - 1 bale straw
 - 1 bale hay or alfalfa mix
 - 1 bale wood shavings
 - 1 bale peat moss
 - 6 cubic ft (wheel barrow)each soil and grassclippings
 - 6 cubic ft green plants

- Material is mixed in a small manure spreader with water
- Brought to 140F and mixed again with alfalfa meal to help reheat
- Allowed to mature over summer
- Perlite added along with slowly available organic fertilizer or fertilized with water soluble

fertilizer

Seed Storage

- ☐ The sum of

 temperature in ° F

 and relative humidity

 (RH) should be near 80
- □ -40° -45° F
- □ -35%-40% RH
- ☐ Viability declines with time

Disease/Pest Management

Pests and Treatments

- ☐ Aphids
- Thrips
- ☐ Slugs
- ☐ Virus resistant seed

Disease/Pest Management

- ☐ Group of soil borne pathogens including-
- Rhizoctonia, Phytophtora,
 Botrytis, Fusarium, Pythium,
 Sclerotinia spp.
- Affects seeds and germinating seedlings
- ☐ Signs white mold at soil surface
- ☐ Symptoms dark stem spots, rotten roots and stems, 'wiry stem'

Damping Off

Damping Off

Disease/Pest Management

Look for patterns among your flats to detect damping off.

Disease/Pest Management

Damping Off

- **Prevention**
- Sanitation
- ☐ Soilless media
- ☐ Air circulation
- ☐ Timely planting
- ☐ Even watering

- ☐ <u>Treatment</u>
- ☐ Fungicide (as spray
 - or drench)
- Quarantine and dispose

- Avoid Transplant
 Shock
- ☐ Harden off plants
- ☐ Handle with care
- ☐ Pay attention to roots
- ☐ Planting depth
- Water

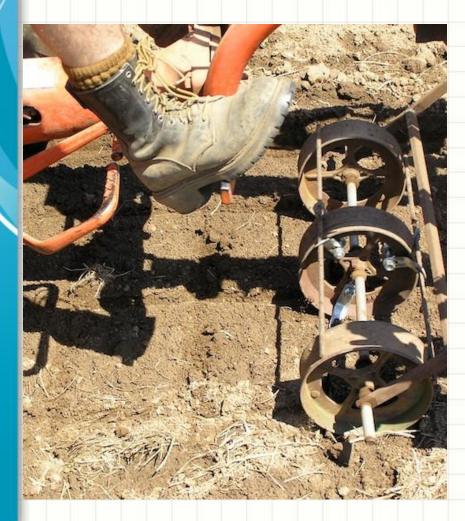
- Considerations
- Select healthiest transplants
- ☐ Timing of planting
- ☐ Rain/Irrigation
- ☐ Root/soil contact
- ☐ Transplant Shock

Adjustments to your system may be necessary if switching from hand transplanting to mechanical transplanting.

EXTENSION

- MechanicalTransplanting
- Water with transplant
- ☐ Faster for large plantings
- ☐ Bed must be passable with equipment
- ☐ Requires minimum of 2 people

Hand Planting


- → Smaller acreages
- Wet conditions
 - OK
- Rows can be uneven
- ☐ Irrigate after

Field Planting Considerations

- ☐ Straight rows
- Spacing
- ☐ Planting depth
- Nutrition
- ☐ Row covers
- ☐ Adapt to system

Planning

Crop Selection

- ☐ Sufficient variety of crops
- ☐ Early and late maturing cultivars
- Crops that are successful in your area

Check out this link for varietal ratings - http://vegvariety.cce.cornell.edu/index.php

Crop Planning

- ☐ Frost free period (~April 15-Oct. 15)
- ☐ Days til plantout?
- ☐ How much to plant?
- ☐ How many plantouts?
- Keep good records for future planning

http://clydesvegetableplantingchart.com/Vegetable-Garden-Planner.aspx

Planning - Determine harvest outcomes for each crop

- ☐ How much per harvest? (lbs., heads, bunches)
- ☐ Frequency of harvests?
- Over what time period?
- ☐ Add 25% cull rate

- ☐ Example: per 100 CSA shares (24 total weeks June 4 November 12)
- Need 1 head x 100 shares per week = 100 harvestable heads per week
- □ Add 25% cull rate for poor quality transplants, crop loss, etc. 100 x
 1.25 = 125 plants per week
- Want to provide a head of lettuce in 16 of 24 weeks of CSA. 125 x
 16 = 2,000 total lettuce plants
 needed

Planning

- ☐ You can create your own plan using excel, access, or other database software
- Not only for transplants, but for all field production
- ☐ Better records mean better planning

Resources

- http://extension.umass.edu/floriculture/factsheets/damping-bedding-plants-and-vegetables
- https://www.morgancountyseeds.com/store/
- http://www.veggiecompass.com/
- http://clydesvegetableplantingchart.com/Vegetable-Garden-Planner.aspx
- http://bse.wisc.edu/HFHP/tipsheets_pdf/dibble4web.pdf
- http://www.nevegetable.org/index.php/management

Resources

- http://www.gpnmag.com/height-control-vegetabletransplants-0
- http://www.uky.edu/Ag/Horticulture/anderson/orgfert1.p
 df
- http://www.uky.edu/Ag/Horticulture/anderson/orgfert3.p
 df
- http://www.hoophouse.msu.edu/assets/custom/files/Dev elop%20A%20Transplant%20Action%20Plan.pdf

Resources

- http://www.msuorganicfarm.com/Transplants.pdf
- http://extension.psu.edu/startfarming/courses/files/select-seeding
- https://attra.ncat.org/attrapub/summaries/summary.php?pub=55
- http://www.agsquared.com

Happy Transplanting!

Questions?

Visit our websites to find out about other programs and events:

Illinois SARE - www.illinoissare.org

Illinois Small Farms -

http://web.extension.illinois.edu/smallfarm/

To reach us

Contacts	Contact information
Jeff Kindhart	jkindhar@illinois.edu
Zack Grant	Zgrant2@illinois.edu
William Davison	wdavison@illinois.edu
Shelby Henning	shenning@illinois.edu
Jeremy Shafer	jshafer@illinois.edu

If you have questions ...

- University of Illinois Extension Local Food Systems and Small Farms team
 - http://web.extension.illinois.edu/smallfarm/
- USDA's Start2Farm site
 - http://www.start2farm.gov/

